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In a recent paper [S. B. Lee, Physica A 387, 1567 (2008)] the epidemic spread of the contact process (CP)
in deterministic fractals, already studied by L. Jensen [J. Phys. A 24, L1111 (1991)], has been investigated by
means of computer simulations. In these previous studies, epidemics are started from randomly selected sites
of the fractal, and the obtained results are averaged all together. Motivated by these early works, here we also
studied the epidemic behavior of the CP in the same fractals, namely, a Sierpinski carpet and the checkerboard
fractals but averaging epidemics started from the same site. These fractal media have spatial discrete scale
invariance symmetry, and consequently the dynamic evolution of some physical observables may become
coupled to the topology, leading to the logarithmic-oscillatory modulation of the corresponding power laws. In
fact, by means of extensive simulations we shown that the topology of the substrata causes the oscillatory
behavior of the epidemic observables. However, in order to observe these oscillations, which have not been
reported in earlier works, the interference effect arising during the averaging of epidemics started from non-
equivalent sites should be eliminated. Finally, by analyzing our data and those available on the literature for the
dependence of the exponents 7 and & on the dimensionality of substrata, we conjectured that for integer

dimensions (2=d=d,=4) the following exact relationship may hold: &+ 7=
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I. INTRODUCTION

Continuous irreversible phase transitions (IPTs) that take
place from an active state to an absorbing one share many
characteristics with their reversible counterparts. One of
them is the existence of a diverging correlation length when
the system approaches to the critical point. Consequently, the
relevant physical observables obey power laws whose expo-
nents define the universality class of the IPT [1-3]. The con-
tact process (CP), originally introduced by Harris [4], is a
simple model that exhibits a continuous IPT for the spread of
an epidemic through a network or lattice. In the network,
usually taken as a hypercubic lattice, the nodes or sites can
be in one of two states: “infected” (occupied, o=1) or “sus-
ceptible” (vacant o=0). Transitions from o=1 to =0 occur
spontaneously with probability A, which is independent of
the neighboring sites. On the other hand, the reverse transi-
tion, from =0 to o=1, takes place with probability 1 —\. In
this case an occupied site autocatalytically creates a new one,
in a randomly selected vacant nearest-neighbor site. Thus the
state ;=0 for all i sites belonging to the network is absorb-
ing and, in all dimensions, the CP undergoes a continuous
(second-order) IPT into an absorbing state such that the sys-
tem becomes trapped into the vacuum state. Also, A is the
control parameter governing the rate of spread of the activity,
and A, is the critical point for the IPT. Since no exact results
are available, the CP has been studied intensively via series
expansion [1,5,6] and Monte Carlo simulations [1-3,6,7].
The model has attracted much interest as a prototype of a
nonequilibrium critical system, and its scaling properties
have been discussed extensively [1-3].

IPTs to an absorbing state have also been studied in frac-
tal media, such as Sierpinski carpets (SCs) [8-12], percola-
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tion clusters [13,14], etc. The SC as well as other determin-
istic fractals are built by means of an iterative process, and
then the topological details of the generating cell are present
at any scale. Consequently the structure is scale invariant
only for a well-defined fundamental spatial scaling ratio b,
i.e., the fractal exhibits discrete scale invariance (DSI) [15].
In this way, the procedures used in order to describe some
physical situations in regular lattices may not be appropriate
to give a complete description of the critical behavior when
the underlying media where the physical process actually
takes place is a fractal. In fact, often the dynamic evolution
of some observables may become somewhat coupled to a
topological property of the underlying substrate leading to
the occurrence of new and interesting physical situations
[16].

Focusing our attention on the epidemic spread of the CP,
in a recent work Lee [12] studied its critical behavior in a
Sierpinski carpet, and in the checkerboard fractal, by using
the epidemic analysis. In that work, dynamic observables
were averaged over samples where the epidemics were ini-
tialized at randomly selected sites (RSs). In this sense, the
paper of Lee [12] replicates very well-known results early
published by Jensen ([9]) (see, e.g., Table I for the sake of
comparison). By using this procedure the coupling between
the topology of the substrate and the dynamic observables is
smeared out or eventually washed out as a simple noise.

In fact, in recent papers [16,20-23] a conjecture that links
the spatial DSI of fractals with the observation of time DSI
in dynamic observables of physical phenomena has been
proposed. Time DSI becomes evident by the occurrence of
the logarithmic-periodic modulation of the power laws de-
scribing the behavior of the physical observables and is char-
acterized by a well-defined fundamental time scaling ratio
(7). Both fundamental scaling ratios, the spatial and time
ones, are linked according to b= 72 where 7 is the dynamic
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TABLE 1. Critical exponents taken from Refs. [9,12], which
were obtained by averaging of the epidemics started from randomly
selected sites of the SC(3,1), and the checkerboard fractals. The
exponents corresponding to the universality class of directed perco-
lation in d=1 and d=2 dimensions are also included.

Substrate 7 1) z
SC(3,1) [12] 0.207(3) 0.443(3) 1.85(2)
SC(3,1) [9] 0.235(10) 0.40(1) 1.89(3)
Checkerboard [12]  0.282(3) 0.270(3) 1.808(3)
Checkerboard [9] 0.285(10) 0.265(5) 1.818(16)
d=11[17] 0.313686(8) 0.159464(6) 1.580745(10)
d=2[18] 0.2295(10)  0.4505(10) 1.76(3)
d=21[19] 0.214(8) 0.460(6) 1.763(9))
d=3[7] 0.114(4) 0.730(4) 1.901(5)

exponent characteristic of the physical process. Furthermore,
the conjecture was tested by means of extensive computer
simulations in various archetypical cases such as the dy-
namic behavior of the Ising magnet [16,20], the voter model
as a paradigmatic example of a coarsening process without
surface tension [21], the behavior of the random walk and
the diffusion-controlled reaction among walkers [22,24], and
the epidemic spread in several Sierpinski carpets with differ-
ent fractal dimensions [23].

Within this context, the purpose of this paper is to explain
why the coupling between the dynamics of the epidemic
spread in the CP and the DSI of the substrate cannot be
observed when the physical observables are measured by av-
eraging epidemics started from randomly selected sites. For
this purpose, we performed simulations by starting the epi-
demic from various (different) specific sites of the Sierpinski
and the checkerboard fractals. Furthermore, we also com-
pared the obtained results with those corresponding to epi-
demics averaged over randomly selected starting sites.

The paper is organized as follows: in Sec. II, we provide
the definition of the contact process and give a brief descrip-
tion of the simulation method and the main characteristics of
the fractals used. Section III is devoted to the presentation
and discussion of the results. Finally, we state our conclu-
sions in Sec. IV.

II. SIMULATION DETAILS

In order to study IPTs by means of epidemic studies,
simulations are initialized by taking a configuration very
close to the absorbing state. For this purpose one actually
starts with the vacuum absorbing state slightly modified by
adding few particles. Subsequently, the system is allowed to
evolve according to the rules previously described for the
CP. During this dynamic process the following quantities are
recorded: (i) the average number of occupied sites N(z) and
(ii) the survival probability P(z), which is the probability that
the epidemic is still active at time ¢. It is worth mentioning
that each single epidemic stops if the sample becomes
trapped in the absorbing state, so that results have to be
averaged over many different epidemics.
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FIG. 1. (a) Sierpinski carpet SC(3,1) and (b) checkerboard frac-
tal obtained after k=4 iterations. The fractal dimensions of these
objects are dp=log(8)/log(3)=1.893 and dr=log(5)/log(3)
=1.465, respectively.

By performing the epidemic at the critical point (A,) of a
second-order IPT in fractal media, power-law behavior with
log-periodic modulation due to time DSI should be assumed
and the following Ansdtze are expected to hold:

N(t)utnNr<10gl>, (1)

log 7

P(t) = t“sP’<—10g t), (2)
log 7

where 7 and & are critical exponents. Also, N’ and P’ are
periodic functions of period one [23]. By taking advantage of
this behavior one can evaluate quite accurately both the criti-
cal point and the epidemic exponents, also including the dy-
namic exponent z by means of the relationship 7=5b%[16,23].

In the present work we use two different types of deter-
ministic fractals, namely a Sierpinski carpet [SC(3,1)] and
the checkerboard. The generating cell of these fractals is
built up by segmenting a square into 3> subsquares and re-
moving one of them from the center, or the four corners,
respectively (see Fig. 1). In the simulation, the segmentation
process is iterated in the remaining subsquares a number k of
steps. Notice that the mathematical fractal can only be ob-
tained after an infinite number of segmentation steps, and
consequently the appropriate choice of the type of boundary
may be a delicate task. In our case we have used periodic
boundary conditions. Since, for the case of the checkerboard
fractal one has that a cell with segmentation step k=n is in
the center of a cell with k=n+1, i.e., four replicated cells
become the four corners of the following generation. For the
case of the Sierpinski Carpet, epidemics started from sites
placed close to the center of the sample that never reach the
edges are free of boundary effects. On the other hand, those
epidemics started from sites placed close to the boundaries
may become influences by that undesirable effect due to the
fact that some fraction of the total epidemics may cross over
the boundary. While along the simulations we were unable to
detect artifacts due to our choice of the periodic boundary
conditions, this choice may cause small discrepancies in
some measured exponents as discussed below.
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FIG. 2. Log-log plots of the number of active sites [N(z)] versus
time for the SC(3,1) fractal as obtained at the critical point for
epidemics started at a single active site placed at the coordinates:
(a) (1094,2187), (b) (1,1), and (c) (729,729). The insets show the
oscillations at a linear-logarithmic scale, whose vertical axis were
obtained after subtracting the modulated power-law fit from the
data. Results are typically averaged over 800 000 different epidem-
ics. More details in the text.

III. RESULTS AND DISCUSSION
Figures 2(a)-2(c) show log-log plots of the number of

active sites [N(#)] as a function of ¢, obtained for the critical
value of the control parameter X\, for the case of SC(3,1)

PHYSICAL REVIEW E 79, 061123 (2009)

fractal with k=7, which corresponds to a lattice of side L
=2187. In all cases epidemics are started by placing a single
active site in an otherwise vacuum state. The data shown in
panels (a), (b), and (c) correspond to epidemics started from
three different sites, namely, in the middle of the upper edge
(1094,2187), in the corner (1,1), and in the corner of the
biggest hole (729,729) of the fractal, respectively. The epi-
demics performed in order to approach criticality are not
shown for the sake of clarity. A careful inspection of Fig. 2
reveals the presence of soft oscillations with a logarithmic
period. Within the context of the interplay between spatial
and time DSI the data were fitted by means of Eq. (1), where
the Fourier expansion of the periodic function was taken
until the first harmonic, namely,

N(t) = At™{1 + B cos[2 log()/1og(7) + ¢]}, (3)

where A and B are amplitudes, log(7) is the logarithmic pe-
riod, and ¢ is the phase constant. After obtaining the best fits
of the data (see Table IT) we decoupled the oscillation just by
subtracting the power law from the measured value of N(z),
as shown in the insets of Figs. 2(a)-2(c). By using this pro-
cedure the oscillatory behavior becomes clear beyond any
doubt. It is worth mentioning that this subtracting procedure
also allows us to obtain a quite accurate determination of the
critical point because noticeable upward (downward) devia-
tions of the oscillatory behavior are observed when the val-
ues of the control parameter are within the active (absorbing)
phase of the system [23]. From the results of the fits shown
in Table II it can be inferred that by starting the epidemics
from different sites, the measured values of the critical con-
trol parameter (\,), the logarithmic period and consequently
the dynamic exponent z are the same (within the error bars),
but in contrast, the exponent 7 and the phase constant ¢ are
different for each case. Table II also shows our results cor-
responding to epidemics initialized at randomly selected
sites, and our determinations of the exponents are in excel-
lent agreement (within the error bars) with those reported in
the literature (see Table I). On the other hand, we also found
that the time behavior of the survival probability of the epi-
demics shows a tiny oscillation. In order to fit the data we

TABLE II. Parameters obtained by fitting the number of active sites N(z) and the survival probability P(z)
by Egs. (3) and (4), respectively. The epidemics were initialized at a single active site of the SC(3,1) indicated
by means of their coordinates. The dynamic exponent z was determined by using 7=5b° with b=3. The table
also includes the results obtained by averaging epidemics started from randomly selected sites (RSs). More

details in the text.

Initial site Observable Exponent log(7) Z A B 1
(1094,2187) N(r) 0.345(5) 0.880(8) 1.84(2) 0.94(4) 0.020(2) 5.5(3)
P(1) 0.264(5) 0.88(2) 1.84(4) 0.59(5) 0.008(3) 3.8(4)
(1,1) N(r) 0.406(2) 0.882(9) 1.85(2) 1.02(1) 0.019(1) 3.2(2)
P(1) 0.211(8) 0.63(1) 0
(729,729) N(z) 0.068(5) 0.884(5) 1.85(1) 1.89(1) 0.022(2) 3.4(3)
P(1) 0.531(8) 0.875(8) 1.83(2) 0.55(2) 0.013(1) 1.3(2)
(RS) N(z) 0.200(5) 0.711(5) 0
P(1) 0.420(9) 0.597(6) 0
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FIG. 3. Log-log plots of the number of active sites [N(z)] versus
time for the checkerboard fractal as obtained at the critical point for
epidemics started at a single active site placed at (a) the center (0,0)
and (b) the middle of the upper edge (0,3281). The insets show the
shape of the oscillations in the same way as in Fig. 2. Results are
typically averaged over 80 000 different epidemics. More details in
the text.

used a Fourier expansion of Eq. (2) until the first harmonic,
namely,

P(t) = Ar %1 + B cos[2 log(r)/log(7) + ¢]}. (4)

However, due to the small amplitude of the oscillation for
the epidemics initialized at the corner of a fractal cell, only
the power-law dependence was taken into account for this
case. The obtained parameters are also summarized in Table
II.

The procedure already described was also used for the
checkerboard fractal with lattice side L=6561(k=8), as
shown in Fig. 3. In this case, the epidemics are started by
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placing the active site in an otherwise vacuum state at (a) the
center (0,0) and (b) the middle of the upper edge (0,3281) of
the fractal cell. Again, Fig. 3 reveals the presence of soft
oscillations that became clear after subtracting the modulated
power law. Soft oscillations were also observed in the sur-
vival probability that was fitted with Eq. (4). Also, in this
fractal the critical control parameter (\.), the logarithmic pe-
riod, and the corresponding dynamic exponent z are indepen-
dent of the initial site from which the epidemics begins (see
Table III). For the sake of comparison, Table III also shows
the results corresponding to epidemics initialized at ran-
domly selected sites, which are in good agreement with those
reported by Lee [12] and Jensen [9] (see Table I).

Summing up, the results obtained by starting the epidem-
ics from a single site allow us to avoid the statistical inter-
ference among epidemics having different phase constants ¢
(see Tables II and III), as well as to observe the oscillations
of the relevant physical observables. The excellent agree-
ment between our estimations of the dynamic exponents and
those obtained from the mean square displacement of the
epidemic [R*(1)] ([9,12,23], see also Table I), strongly sup-
ports the link between the dynamics of the physical process
and the topology of the underlying media where the process
actually takes place.

In order to better understand the relationship between the
oscillations and the fractal topology, as well as the role of the
starting point, we performed a systematic study of epidemics
initialized from different sites, which are equivalent after res-
caling their coordinates by means of the fundamental scaling
ratio. In the case of the SC(3,1), which has an infinite rami-
fication order, one expects that the size and the distribution
of holes will have a major effect on the spread dynamics. In
this way, the epidemics were initialized at sites placed at the
corners of the biggest hole of each generation and along the
main diagonal of the fractal, i.e., the sites of coordinates
(3",3"), with n=1, 2, 3, 4, 5, and 6. The obtained results are
shown in Fig. 4, and as can be observed in the main panel,
for all the cases the number of the active sites shows a slow
increase at the beginning of the spread, which occurs for a
time that increases with the size of the nearest hole. Of
course, the epidemic started at the corner of the biggest hole
is the lower bound for the dynamic evolution. After this
small slope regime the time behavior crosses over to that
corresponding to the site nearest to the smallest hole, (1,1).

TABLE III. Parameters obtained by fitting the number of active sites N(z), and survival probability P(z)
for epidemics initialized in a single active site placed at (a) the center (0,0) and (b) the middle of the upper
edge (0,3281) of the checkerboard fractal. The dynamic exponent z was determined by using 7=b% with b
=3. The table also includes results obtained by a averaging epidemics starting from RSs. More details in the

text.
Initial site Observable Exponent log(7) b4 A B ¢
(0,0) N(z) 0.422(2) 0.860(8) 1.80(2) 1.350(9) 0.013(1) 3.3(3)
P(1) 0.123(1) 0.85(2) 1.78(4) 0.899(1) 0.0015(1) 1.5(1)
(0,3281) N(2) 0.319(3) 0.860(4) 1.802(8) 1.108(3) 0.025(1) 0.1(7)
P(1) 0.226(1) 0.861(9) 1.80(2) 0.946(2) 0.0050(1) 2.5(3)
(RS) N(2) 0.282(9) 0.67(1) 0
P(1) 0.278(10) 0.75(1) 0
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FIG. 4. Log-log plots of the time behavior, at criticality, of the
number of active sites [N(r)] for the SC(3,1). The epidemics were
started at a single active site, whose coordinates are listed in the
main panel. In order to show the relation between the oscillations
and the observed crossovers in the spread of epidemics initialized
from different sites, the lower panel shows the oscillation corre-
sponding to the epidemics started at the site (1,1). More details in
the text.

The lower panel of Fig. 4 shows the shape of the oscillation
by the epidemics initialized at the site (1,1). From this panel
the correspondence between the minimum of the oscillations
and the beginning of the departure from the behavior corre-
sponding to the epidemics initialized at the site (729,729)
becomes evident. In agreement with these observations, the
snapshots of the epidemics initialized at sites (81,81) and
(27,27), shown in Fig. 5, indicate that for a given time, the
number of active sites is larger for the epidemics started at
the corner of the smallest hole. Furthermore the crossover
from the small slope regime 7=0.068(5) to the large slope
behavior 7=0.406(2) takes place when the epidemics reach
the environment of the site (1,1).

On the other hand, the checkerboard fractal has a finite
ramification order, which implies that the structure has
weakly linked sites. Consequently, these sites should have
the major influence on the spread of the epidemics. In order
to study their effects, the epidemics were initialized at the
sites (3™1,3") with n=1,2,3,4,5, and 6, which are self-
similar by rescaling the spatial scale by the fundamental scal-
ing ratio b=3. Also, the selected sites are in the center of
environments that can be related to different generations.
Figure 6 shows the time evolution of the number of active
sites. From the main panel an initial regime is observed
where the spread for all sites coincides with that correspond-
ing to the behavior of site (0,0). After that regime, each
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FIG. 5. Snapshots of the epidemics initialized from the sites
[(@)—(c)] (81,81) and [(d)—(f)] (27,27) corresponding to relevant
times determined from Fig. 4. Active sites are shown in black while
fractal sites are indicated in gray. In order to consider the effects of
the periodic boundary conditions the simulation cells were reas-
sembled and the site (1,1) is in the center of the snapshot. More
details in the text.

spreading exhibits a plateau whose beginning becomes
shifted toward longer times when the distance from the start-
ing site to the origin increases. From the lower panel of Fig.
6 it is inferred that the beginning of the plateau always co-
incides with a maximum of the oscillation corresponding to
the epidemics started at site (0,0). Furthermore, after the pla-
teau, the epidemics recover the spread behavior of the epi-
demics started at site (0,0). These results imply that when the
spread is trapped within an environment or generation
weakly linked with the fractal structure, a slowdown of the
dynamics is observed. The latter assertion is supported by the

. (9’3)
- (27,9)
—.—(8127)
- (243,81)
109 _ (720,243
— (2187,729) v ;
Z 10 : 7 j :
10° F j f l
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FIG. 6. Log-log plots of the number of active sites [N(7)] versus
time for the checkerboard fractal as obtained at the critical point.
Epidemics are started at a single active site, whose coordinates are
listed in the main panel. The lower panel shows the oscillation
corresponding to the epidemics initialized at (0,0). More details in
the text.
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FIG. 7. Snapshots of the epidemics initialized at the site
(243,81), corresponding to relevant times determined from Fig. 6.
Active sites are shown in black while fractal sites are indicated in
gray. More details in the text.

snapshots shown in Fig. 7, e.g., one observes a small number
of active sites for #=10* MCS that corresponds to the plateau
of the epidemic initialized at the same site shown in Fig. 6.

In spite of the fact that our epidemic simulations are per-
formed during large time periods (usually involving few time
decades more than in previous papers [9]), it is worth to
discuss the expected long-time behavior, namely, t— . The
fact that the amplitude of the oscillations increases (when we
plot the results after subtracting the power law, as e.g., in
Figs. 2 and 3) or remain constant (when we plot the results
normalized by the power law, as, e.g., 4 and 6), strongly
suggests that the oscillations will remain in the long-time
regime. Also notice that we are able to detect up to 4-5
oscillations exhibiting the above mentioned behavior so that
we can assure that for that relative long period of time the
oscillation are not damped. Furthermore, for the case of ran-
dom walks on fractal media, there is a number of exact ana-
Iytical results showing that the oscillation remains forever
[24-27]. Due to the similarity of both systems (e.g., spread-
ing versus diffusion) we are further confident that the oscil-
lations in the contact process will also remain for the long-
time regime.

Finally, it is worth mentioning that in integer
d-dimensional media, the critical exponents are not indepen-
dent but they are linked according to a scaling relationship,
namely, ‘f: n+ 0+, where & is the exponent of the
asymptotic time dependence of the density of active sites
when the initial condition corresponds to a fully occupied
state [28]. For the case of the studied fractals, we obtained
8 =0.410(9) (SC) and & =0.264(6) (checkerboard) (the re-
sults are not shown here for the sake of the space). Then, by
using the obtained exponents 7, & and z (listed in Tables II
and IIT) and &', the scaling relationship holds if the dimen-
sion is replaced by the fractal dimension (dF).

On the other hand, based on our observations that the
dynamic exponent is independent of the starting site, one
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FIG. 8. Plot the exponents 7+ versus dimension. The data
corresponding to the universality class of directed percolation (full
squares) are taken from the references listed in Table I; the data
corresponding to the fractals (open triangles) are taken from the
present work and Ref. [23]. The solid line shows the predictions of
the conjecture proposed by Eq. (5)

concludes that the above mentioned scaling relationship also

implies that ——5’ 7+ d=const, i.e., 7+6=0.610(10) and
7+ 6=0. 550(10) for the SC and checkerboard fractals, re-
spectively. These figures can be compared with the results
obtained in previous works (see Table I). In fact, for the SC
one has 7+6=0.650(4) [12] and 0.635(10) [9], i.e., our re-
sults are approximately 5% off from the early work, a fact
that could be due to the choice of the boundary conditions.
Also, for the checkerboard fractal one has 7+ 6=0.552(4)
[12] and 0.550(11) [9] in full agreement with our results. In
this sense, the initial condition dependent exponents 7 and &
are no longer independent. In view of this finding we ana-
lyzed the available data on the dependence of spread expo-
nents on the dimensionality, as shown in Fig. 8. While, in
general, one observes a defined trend of the data for 1 =d
=d. (d, is the upper critical dimension for directed percola-
tion universality class), showing that 7+ & increases mono-
tonically with the dimension, the linear dependence found
for d=2 is particularly striking. Since it is customary to look
for rational numbers in order to obtain exact values of criti-
cal exponents, the observed behavior leads us to conjecture
the following relationship:

d+2
S+ nzT,z =d=d,, (5)

which may hold for directed percolation. In fact, Eq. (5) is
consistent within the error bars, as follows: (a) for d=2 the
prediction is J6+#=3 and the simulations give &+ 7
=0.6800(14) [18] and 6+ 7=0.674(10) [19] (see Table I); (b)
for d=3 the prediction is 6+ 7=7¢ 2 while the numerical results
yield 5+ 7=0.844(6) [7]; and, of course, for d.=4 Eq. (5)
gives exactly the mean field value 6+ n=1.

IV. CONCLUSIONS

We studied the epidemic behavior of the contact process
in a Sierpinski carpet and the checkerboard fractals, showing
that time DSI becomes evident by the observation of
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logarithmic-periodic modulations in the dynamic behavior of
the physical observables when the epidemics are initialized
at a single site. The results point out that the subtle interplay
between the dynamics of the physical process and the topol-
ogy of the fractal requires careful measurements in order to
avoid the occurrence of interference effects that may hinder
the observation of the actual physical behavior. In fact, by
averaging epidemics started from randomly selected sites,
the oscillations become severely damped and could be con-
fused with simply statistical noise. In this way, by comple-
menting the recent results of Lee [12] and early measure-
ments of Jensen [9], we expect that the present paper will

PHYSICAL REVIEW E 79, 061123 (2009)

contribute to a deep understanding of the epidemic behavior
of the CP in particular, and the dynamic critical behavior of
directed percolation processes in general. In particular, our
conjecture 7+ d=const, which is independent of the starting
point of the epidemics, poses a theoretical challenge for the
understanding of the widespread universality of directed per-
colation.
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